MTH310 EXAM 2 REVIEW

SA LI
4.1 Polynomial Arithmetic and the Division Algorithm
A. Polynomial Arithmetic
*Polynomial Rings
If R is a ring, then there exists a ring T containing an element x that is not in R and the set $R[x]$ of all elements of T such that
$a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$ (where $\mathrm{n} \geq 0$ and $a_{i} \in \mathrm{R}$) is a subring of T containing R.
*Polynomial addition, multiplication and contribution law.
*Definition: Let $\mathrm{f}(\mathrm{x})=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$ be a polynomial in $\mathrm{R}[\mathrm{x}]$ with $a_{n} \neq 0_{R}$, Then a_{n} is called the leading coefficient of $f(x)$. The degree of $f(x)$ is the integer n; it is denoted "deg $f(x)$ ". In other words, $\operatorname{deg} f(x)$ is the largest exponent of x that appears with a nonzero coefficient, and this coefficient is the leading coefficient.

Example: $\mathrm{f}(\mathrm{x})=3+2 x+7 x^{2}+8 x^{3}$
$\operatorname{deg} f(x)=3$
leading coefficient $=8$
Thm 4.2 If R is an integral domain and $f(x), g(x)$ are nonzero polynomials in $R[x]$. Then $\operatorname{deg}\left(\mathrm{f}(\mathrm{x})^{} \mathrm{~g}(\mathrm{x})\right)=\operatorname{deg} \mathrm{f}+\operatorname{deg} \mathrm{g}$.
*Cor: If R is an integral domain, then so is $\mathrm{R}[\mathrm{x}]$.
*Cor 4.4: Let R be a ring. If $\mathrm{f}(\mathrm{x})$, $\mathrm{g}(\mathrm{x})$, and $\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x})$ are nonzero in $\mathrm{R}[\mathrm{x}]$, then $\operatorname{deg}(f(x) g(x)) \leq \operatorname{deg} f(x)+\operatorname{deg} g(x)$
*Cor 4.5: Let R be an integral domain and $f(x) \in R[x]$. Then $\mathrm{f}(\mathrm{x})$ is a unit in $\mathrm{R}[\mathrm{x}]$ if and only if $f(x)$ is a constant polynomial that is a unit in R.

In particular, if F is a field, the units in $\mathrm{F}[\mathrm{x}]$ are the nonzero constants in F .
Example 8: $5 \mathrm{x}+1$ is a unit in $\mathbb{Z}_{25}[x]$ that is not a constant.
proof: $(5 \mathrm{x}+1)(20 \mathrm{x}+1)=100 x^{2}+20 \mathrm{x}+5 \mathrm{x}+1=100 x^{2}+25 \mathrm{x}+1=1$ in $\mathbb{Z}_{25}[x]$
B. The Division Algorithm in $\mathrm{F}[\mathrm{x}]$
*Thm 4.6
Let F be a field and $\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x}) \in \mathrm{F}[\mathrm{x}]$ with $\mathrm{g}(\mathrm{x}) \neq 0_{F}$. Then there exist unique polynomials $q(x)$ and $r(x)$ such that $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x}) \mathrm{q}(\mathrm{x})+\mathrm{r}(\mathrm{x})$ and either $\mathrm{r}(\mathrm{x})=0_{F}$ or $\operatorname{deg} \mathrm{r}(\mathrm{x})<\operatorname{deg} \mathrm{g}(\mathrm{x})$

Example 9: Divide $\mathrm{f}(\mathrm{x})=3 x^{5}+2 x^{4}+2 x^{3}+4 x^{2}+\mathrm{x}-2$ by $\mathrm{g}(\mathrm{x})=2 x^{3}+1$.
$\left.\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})\left(\frac{3}{2} x^{2}+\mathrm{x}+1\right)+\frac{5}{2} x^{2}-3\right)$
4.2 Divisibility in $\mathrm{F}[\mathrm{x}]$
*Definition: Let F be a field and $\mathrm{a}(\mathrm{x}), \mathrm{b}(\mathrm{x}) \in \mathrm{F}[\mathrm{x}]$ with $\mathrm{b}(\mathrm{x}) \neq 0_{F}$, we say that $\mathrm{b}(\mathrm{x})$ divides $\mathrm{a}(\mathrm{x})$ [or that $\mathrm{b}(\mathrm{x})$ is a factor of $\mathrm{a}(\mathrm{x})]$ and write $b(x) \mid a(x)$ if $\mathrm{a}(\mathrm{x})=\mathrm{b}(\mathrm{x}) \mathrm{h}(\mathrm{x})$ for some $\mathrm{h}(\mathrm{x}) \in \mathrm{F}[\mathrm{x}]$.

Ex: $(2 x+1) \mid\left(6 x^{2}-x-2\right)$ in $\mathbb{Q}[x]$ because $6 x^{2}-\mathrm{x}-2=(2 \mathrm{x}+1)(3 \mathrm{x}-2)$.
*Thm 4.7
Let F be a field and $\mathrm{a}(\mathrm{x}), \mathrm{b}(\mathrm{x}) \in \mathrm{F}[\mathrm{x}]$ with $\mathrm{b}(\mathrm{x}) \neq 0_{F}$
(1) If $\mathrm{b}(\mathrm{x})$ divides $\mathrm{a}(\mathrm{x})$, then $\mathrm{cb}(\mathrm{x})$ divides $\mathrm{a}(\mathrm{x})$ for each nonzero $\mathrm{c} \in F$;
(2) Every divisor of $\mathrm{a}(\mathrm{x})$ has degree less than or equal to deg $\mathrm{a}(\mathrm{x})$.

Proof: see textbook
*Definition: Let F be a field and $\mathrm{a}(\mathrm{x}), \mathrm{b}(\mathrm{x}) \in \mathrm{F}[\mathrm{x}]$, not both zero. The greatest common divisor (gcd) of $\mathrm{a}(\mathrm{x})$ and $\mathrm{b}(\mathrm{x})$ is the monic polynomial of highest degree that divides both $\mathrm{a}(\mathrm{x})$ and $\mathrm{b}(\mathrm{x})$. In other words, $\mathrm{d}(\mathrm{x})$ is the gcd of $\mathrm{a}(\mathrm{x})$ and $\mathrm{b}(\mathrm{x})$ provided that $\mathrm{d}(\mathrm{x})$ is monic and
(1) $d(x) \mid a(x)$ and $d(x) \mid b(x)$
(2) if $c(x) \mid a(x)$ and $c(x) \mid b(x)$, then $\operatorname{deg} \mathrm{c}(\mathrm{x})<\operatorname{deg} \mathrm{d}(\mathrm{x})$

Example 2, 3 in 4.2
*Thm 4.8:

Let F be a field, $\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x}) \in F[x]$, not both zero. Then there is a unique $\mathrm{gcd} \mathrm{d}(\mathrm{x})$ of $\mathrm{f}(\mathrm{x})$ and $g(x)$. Furthermore, there exist (not necessarily unique) polynomials $u(x)$ and $v(x)$ such that
$\mathrm{d}(\mathrm{x})=\mathrm{f}(\mathrm{x}) \mathrm{u}(\mathrm{x})+\mathrm{g}(\mathrm{x}) \mathrm{v}(\mathrm{x})$.
*Cor 4.9
Let F be a field and $\mathrm{a}(\mathrm{x}), \mathrm{b}(\mathrm{x}) \in F[x]$, not both zero. A monic polynomial $\mathrm{d}(\mathrm{x}) \in F[x]$ is greatest common divisor of $\mathrm{a}(\mathrm{x})$ and $\mathrm{b}(\mathrm{x})$ if and only if $\mathrm{d}(\mathrm{x})$ satisfies these conditions:
(1) $d(x) \mid a(x)$ and $d(x) \mid b(x)$
(2)If $c(x) \mid a(x)$ and $c(x) \mid b(x)$, then $c(x) \mid d(x)$
*Thm 4.10
Let F be a field and $\mathrm{a}(\mathrm{x}), \mathrm{b}(\mathrm{x}), \mathrm{c}(\mathrm{x}) \in F[x]$. If $a(x) \mid b(x) c(x)$ and $\mathrm{a}(\mathrm{x})$ and $\mathrm{b}(\mathrm{x})$ are relatively prime, then $a(x) \mid c(x)$.
4.3 Irreducible and Unique Factorization
$*_{f}(x)$ is an associate of $g(x)$ in $F[x]$ if and only if $f(x)=\operatorname{cg}(x)$ for some nonzero $c \in$ F.

Ex: $x^{2}+1$ is an associate of $2 x^{2}+2$ in $\mathbb{R}[x]$

* Definition:

Let F be a field. A nonconstant polynomial $\mathrm{p}(\mathrm{x}) \in \mathrm{F}(\mathrm{x})$ is said to be irreducible if its only divisors are its associate and the nonzero constant polynomials (units). A nonconstant polynomial that is not irreducible is said to be reducible.

Ex: Every polynomial of degree 1 in $\mathrm{F}[\mathrm{x}]$ is irreducible in $\mathrm{F}[\mathrm{x}]$

*Thm 4.11

Let F be a field. A nonzero polynomial $f(x)$ is reducible in $F[x]$ if and only if $f(x)$ can be written as the product of two polynomials of lower degree.

Ex: $x^{2}+1$ is irreducible in $\mathbb{R}[x]$ but it is reducible in $\mathbb{C}[x]$ since
$x^{2}+1=(\mathrm{x}-\mathrm{i})(\mathrm{x}+\mathrm{i})$

*Thm 4.12

Let F be a field and $\mathrm{p}(\mathrm{x})$ a nonconstant polynomial in $\mathrm{F}[\mathrm{x}]$. Then the following conditions are equivalent:
(1) $p(x)$ is irreducible.
(2) If $\mathrm{b}(\mathrm{x})$ and $\mathrm{c}(\mathrm{x})$ are any polynomials such that $p(x) \mid b(x) c(x)$, then $p(x) \mid b(x)$ or $p(x) \mid c(x)$
(3) If $\mathrm{r}(\mathrm{x})$ and $\mathrm{s}(\mathrm{x})$ are any polynomials such that $\mathrm{p}(\mathrm{x})=\mathrm{r}(\mathrm{x}) \mathrm{s}(\mathrm{x})$, then $\mathrm{r}(\mathrm{x})$ or $\mathrm{s}(\mathrm{x})$ is a nonzero constant polynomials.
*Cor
Let F be a field and $\mathrm{p}(\mathrm{x})$ is an irreducible polynomial in $\mathrm{F}[\mathrm{x}]$. If $p(x) \mid a_{1}(x) a_{2}(x) \ldots a_{n}(x)$, then $\mathrm{p}(\mathrm{x})$ divides at least one of the $a_{i}(x)$ for some i .

* Thm 4.14

Let F be a field. Every nonconstant polynomial $\mathrm{f}(\mathrm{x})$ in $\mathrm{F}[\mathrm{x}]$ is a product of irreducible polynomials in $\mathrm{F}[\mathrm{x}]$. This factorization is unique in the following sense: If
$\mathrm{f}(\mathrm{x})=p_{1}(x) p_{2}(x) \ldots p_{r}(x)$ and
$\mathrm{f}(\mathrm{x})=q_{1}(x) q_{2}(x) \ldots q_{s}(X)$
with each $p_{i}(x)$ and $q_{j}(x)$ irreducible, then $\mathrm{r}=\mathrm{s}$ (that is, the number of irreducible factors is the same). After the $q_{j}(x)$ are reordered and relabeled, if necessary
$p_{i}(x)$ is an associate of $q_{i}(x) .(\mathrm{i}=1,2,3, \ldots, \mathrm{r})$.
4.4 Polynomial Functions, Roots, and Reducibility

* Roots of Polynomials

Definition:
Let R be a commutative ring and $f(x) \in R[x]$. An element a of R is said to be a root (or zero) of the polynomial $\mathrm{f}(\mathrm{x})$ if $\mathrm{f}(\mathrm{a})=0_{R}$, that is, if the induced function $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ maps a to 0_{R}.
*Example 3, 4.

* Thm 4.15 The Remainder Theorem

Let F be a field, $f(X) \in F(x)$ and $a \in F$. The remainder when $f(x)$ is divided by the polynomial x-a is $f(a)$.

Proof of Thm 4.15: By the Division Algorithm.
Ex: Find the remainder when $\mathrm{f}(\mathrm{x})=x^{79}+3 x^{24}+5$ is divided by $\mathrm{x}-1$.
$\mathrm{f}(1)=1+3+5=9$ is the remainder.

* Thm 4.16 The Factor Theorem

Let F be a field, $\mathrm{f}(\mathrm{x}) \in \mathrm{F}[\mathrm{x}]$ and $\mathrm{a} \in \mathrm{F}$. Then a is a root of the polynomial $\mathrm{f}(\mathrm{x})$ if and only if $x-a$ is a factor of $f(x)$ in $F[x]$.
(Proof see textbook)
Ex: Show $\mathrm{f}(\mathrm{x})=x^{7}-x^{5}+2 x^{4}-3 x^{2}-\mathrm{x}+2$ is reducible in $\mathbb{Q}[x]$
$\mathrm{f}(1)=1-1+2-3-1+2=0$
then $x-1$ is a factor of $f(x)$.

* Cor 4.17

Let F be a field and $f(x)$ a nonzero polynomial of degree n in $F[x]$. Then $f(x)$ has at most n roots in F .

* Cor 4.18

Let F be a field and $f(x) \in F[x]$ with $\operatorname{degf}(x) \geq 2$. If $f(x)$ is irreducible in $F[x]$ then $f(x)$ has no roots in F .

The converse of Cor 4.18 is false in general.

* Cor 4.19

Let F be a field and let $f(x) \in F[x]$ be a polynomial of degree 2 or 3 . Then $f(x)$ is irreducible in $F[x]$ if and only if $f(x)$ has no roots in F.

* Cor 4.20

Let F be an infinite field and $f(x), g(x) \in F[x]$. Then $f(x)$ and $g(x)$ induce the same function from F to F if and only if $f(x)=g(x)$ in $F[x]$.
$4.42-11,15,17,27,29$ suggested problems
4.5 Irreducibility in $\mathbb{Q}[x]$

* Thm 4.21 Rational Root Test

Let $\mathrm{f}(\mathrm{x})=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots .+a_{0}$ be a polynomial with integer coefficient. if $\mathrm{r} \neq 0$ and the rational number r / s (in lowest terms) is a root of $\mathrm{f}(\mathrm{x})$. then $r \mid a_{0}$ and $s \mid a_{n}$.

Ex 1 in textbook.

* Lemma 4.22

Let $\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x}), \mathrm{h}(\mathrm{x}) \in \mathbb{Z}[x]$ with $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x}) \mathrm{h}(\mathrm{x})$. If p is a prime that divides every coefficient of $f(x)$, then either p divides every coefficient of $g(x)$ or p divides every coefficient of $h(x)$.

Proof: if $f(x)$ is a constant polynomial
if $\mathrm{c}=\mathrm{ab}$
$p \mid c$ implies $p \mid a$ or $p \mid b($ Thm 1.5)
if $\operatorname{deg} \mathrm{f}=1, \mathrm{f}(\mathrm{x})=\mathrm{px}+2 \mathrm{p}=\mathrm{p}(\mathrm{x}+2)=\mathrm{g}(\mathrm{x}) \mathrm{h}(\mathrm{x})$ at least one is a constant

* Thm 4.23

Let $f(x)$ be a polynomial with integer coefficients. Then $f(x)$ factors as a product of polynomials of degree m and n in $\mathbb{Q}[x]$ if and only if $f(x)$ factors as a product of polynomials of degree m and n in $\mathbb{Z}[x]$

Ex: $\mathrm{f}(\mathrm{x})=x^{4}-5 x^{2}+1$, prove $\mathrm{f}(\mathrm{x})$ is irreducible in $\mathbb{Q}[x]$.
$\mathrm{x}+1$ or $\mathrm{x}-1$ are only possible rational factors.
$\mathrm{f}(1) \neq 0, \mathrm{f}(-1) \neq 0 \Rightarrow \mathrm{f}(\mathrm{x})$ doesn't have rational factors.

* Only possible way to factor $\mathrm{f}(\mathrm{x})$ is two products of degree 2 polynomials.
$\mathrm{f}(\mathrm{x})=\left(x^{2}+a x+b\right)^{*}\left(x^{2}+c x+d\right)=x^{4}-5 x^{2}+1$
Then we have:

1. $\mathrm{a}=-\mathrm{c}$
2. $5=c^{2}-b-d$
3. $\mathrm{bd}=1$

Then we have $c^{2}=7$ or $c^{2}=3$ but $\mathrm{c} \notin \mathbb{Q}[x]$
Therefore, we conclude that f is irreducible.

* Thm 4.24 Eisenstein's Criterion

Let $\mathrm{f}(\mathrm{x})=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots . .+a_{0}$ be a nonconstant polynomial with integer coefficients. If there is a prime p such that p divides each $a_{0}, a_{1}, \ldots, a_{n-1}$, but p does not divide a_{n} and p^{2} does not divide a_{0}, then $\mathrm{f}(\mathrm{x})$ is irreducible in $\mathbb{Q}[x]$.

Ex: $\mathrm{f}(\mathrm{x})=x^{17}+6 x^{13}-15 x^{4}+3 x^{2}-9 x+12$
prove $\mathrm{f}(\mathrm{x})$ is irreducible in $\mathbb{Q}[x]$
$\mathrm{p}=3$ divides $a_{n-1}, a_{n-2}, \ldots \ldots, a_{0}$
but p does not divide 1 and p^{2} does not divide 12
Therefore, we say $f(x)$ is irreducible.
Ex: $x^{9}+5$ is irreducible or reducible in $\mathbb{Q}[x]$
$\mathrm{p}=5$
p^{2} does not divide 5
so $x^{9}+5$ is irreducible.

